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Abstract Differences of modeled surface upward and downward longwave and shortwave

irradiances are calculated using modeled irradiance computed with active sensor-derived

and passive sensor-derived cloud and aerosol properties. The irradiance differences are

calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly

global, and annual global. Using the irradiance differences, the uncertainty of surface

irradiances is estimated. The uncertainty (1r) of the annual global surface downward

longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out

of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the

annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of

398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances

computed using cloud properties derived from imagers on a sun-synchronous orbit that

covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled

irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we

assume that longwave and shortwave uncertainties are independent of each other, but

up- and downward components are correlated with each other, the uncertainty in global

annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the

satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.

Keywords Surface net irradiance � Surface radiative energy budget

1 Introduction

Estimating the surface irradiance is important in understanding the energy cycle of the

globe for several reasons. The sum of surface net irradiance and other surface enthalpy
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(sensible and latent heat) fluxes is the energy flux through the lower boundary of the

atmospheric column and the upper boundary of an ocean column. Therefore, the global

mean net surface irradiance balances with the sum of the surface latent and sensible heat

fluxes and ocean heating rate (Wong et al. 2006). In addition, the radiative net energy

deposition in the atmosphere and vertical and horizontal profiles of the energy deposition

determine the dynamics in the atmosphere. Understanding the top-of-atmosphere (TOA)

surface and atmospheric irradiances quantitatively is, therefore, necessary to quantitatively

understand the dynamics, which in turn controls cloud feedback processes (Wielicki et al.

1995). The global mean surface irradiance estimate is only possible through modeling

surface irradiances. In earlier studies, cloud properties derived from passive satellite

instruments combined with radiative transfer models have been used to estimate surface

irradiance (e.g., Pinker and Laszlo 1992; Zhang et al. 1995, and a summary is given by

Kandel and Viollier 2010).

While surface irradiances computed with satellite-derived and modeled cloud properties

have been compared in earlier studies (e.g., Hatzianastassiou et al. 2005; Su et al. 2008;

Stephens 2011), the uncertainty of surface irradiances averaged over different temporal and

spatial scales, such as monthly or annual, and regional, zonal, or global, is not well

understood. The purpose of this paper is to extend the study by Kato et al. (2011) to

estimate uncertainties of surface irradiance components in various spatial and temporal

scales (1� 9 30� or 1� 9 1� gridded, 1� zonal, and global spatial scales and monthly and

annual temporal scales).

In this study, we define the uncertainty as a range of surface irradiances in which

the true value resides at a 68% probability. Our goal is different from estimating the

error of a specific surface irradiance estimate, although we need to have a specific

surface irradiance estimate to attach the uncertainty. Taylor and Kuyatt (1994) describe

the difference nicely; the result of a measurement (modeled irradiance) could have a

negligible error because it can unknowably be very close to the truth even though it

may have a large uncertainty. There are two possible ways of estimating the modeled

surface irradiance uncertainty. One way is to estimate the uncertainty of the input

variables, perturb inputs by the uncertainty amount, and compute the irradiance using a

radiative transfer model. The irradiance change by the sensitivity study is considered as

the uncertainty due to input variables. Some earlier studies (e.g., Zhang et al. 1995;

Zhang et al. 2004; Kim and Ramanathan 2008) used this approach. A second approach

is to use surface observations and compute the root mean square (RMS) difference

of modeled and observed surface irradiances. We primarily take the former approach

in this study, but briefly examine how uncertainties derived by the two approaches

differ.

Sections 2 and 3 present a brief overview of surface longwave and shortwave irradiance

estimates, respectively, to understand the range of the global annual mean values. Sec-

tion 4 briefly discusses the computation method using CALIPSO (Winker et al. 2010),

CloudSat (Stephens et al. 2008), moderate resolution imaging spectrometer (MODIS) and

Clouds and the Earth’s Radiant Energy System (CERES) data. Section 5 analyzes the

uncertainty of surface irradiances for various temporal and spatial scales by comparing two

modeled irradiances (sensitivity approach). Section 6 uses surface observations to estimate

modeled surface irradiance uncertainties (surface observation approach). Section 7 com-

bines uncertainties of all surface irradiance components and discusses the uncertainty in

the global annual net surface irradiance.
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2 Global Annual Mean Surface Downward Longwave Irradiance

Stephens et al. (2011) provide a summary of the global annual mean surface longwave

upward and downward irradiance estimated from satellite observations, reanalysis, and

ground-based observations. The global annual mean downward longwave irradiance

estimated from satellite observations (GEWEX SRB, ISCCP-FD, CERES) ranges from

342 to 348 W m-2 (Stephens et al. 2011). The global annual mean downward longwave

irradiance estimated by reanalyses ranges from 324 to 340 W m-2 (Stephens et al.

2011).

Wild et al. (2001) compared the global annual mean surface downward longwave

irradiance computed in general circulation models (GCMs) with surface observations in

Global Energy Balance Archive (GEBA) and Baseline Surface Radiation Network (BSRN,

Ohmura et al. 1998) data sets. Their results show that the modeled global annual mean

surface downward longwave irradiance by GCMs varies more than 40 W m-2, ranging

from 303 to 344 W m-2. GCM-derived surface downward longwave irradiances are less

than observed irradiances especially under dry and cold conditions. Their results suggest

that the difference is caused by the underestimation of surface downward longwave irra-

diances under cloud-free conditions.

The global annual mean surface downward longwave irradiance under clear-sky con-

ditions computed with satellite-based observations (passive sensor-derived clouds) and that

from reanalyses shown in Stephens (2011) range from 309 to 326 W m-2, which is a

smaller variation than all-sky values (324–348 W m-2). In addition, among values given

by Stephens (2011), all but two clear-sky values agree to within a few W m-2. All-sky

global annual mean surface downward longwave irradiances from reanalyses tend to be

smaller than satellite-based estimates (Stephens 2011), indicating that the difference is

caused by clouds, especially low-level clouds. This suggests that cloud properties used in

reanalyses are different from those derived from satellites and that the cloud difference is a

source of the difference between satellite-based and reanalysis-based estimates for all-sky

conditions.

When the global annual mean surface downward longwave irradiance is estimated using

MODIS-derived cloud properties by the Ed2 CERES cloud algorithm (Minnis et al. 2011),

the global annual mean value is smaller by 3.6 W m-2 compared with the irradiance

estimated using CALIPSO and CloudSat-derived cloud properties (Kato et al. 2011). The

exact value of the surface downward longwave irradiance difference caused by passive and

active sensor–derived clouds depends on the cloud base height estimated from passive

sensors. For example, the increase of the global mean surface downward longwave irra-

diance estimated by Zhang et al. (2004) using climatological cloud vertical profiles (Wang

et al. 2000) from International Satellite Cloud Climatology Project C1 input data (ISCCP-

FC) is 1.8 W m-2.

Though these differences due to cloud base are significant, studies using satellite-

derived cloud properties by Zhang et al. (2006) and by Kato et al. (2011) show that the

largest uncertainty in computing the global annual mean surface downward longwave

irradiance is caused by uncertainty in near-surface air temperature and precipitable water.

The uncertainty in the global annual mean surface downward longwave irradiance caused

by surface temperature and water vapor amount estimated by Kato et al. (2011) is ±4.5 and

±5.2 W m-2, respectively. Both are larger than the uncertainty due to cloud base height

found in Kato et al. (2011).
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3 Global Annual Mean Surface Shortwave Irradiance

Comparisons of surface shortwave irradiances from previous studies are more problematic

due to different assumptions made regarding TOA solar insolation. To avoid the effect of

the insolation difference in various estimates, we use the surface absorptance, which is the

net surface shortwave irradiance (downward minus upward) divided by the TOA insola-

tion, to compare surface shortwave irradiances from earlier studies. The global annual

mean surface absorptance ranges from 0.471 to 0.548 (Table 1). The absorptance given by

L’Ecuyer et al. (2008) is the first estimate of the global annual mean surface downward

shortwave irradiance using CloudSat-derived cloud properties. However, it is probably

biased high because clouds that were undetected by CloudSat are missing in their com-

putations. If we exclude the maximum and minimum values shown in Table 1, the

absorptances range from 0.471 to 0.495. This corresponds to a range of 8.2 W m-2, using

an insolation of 341.3 W m-2.

Uncertainty in the surface downward shortwave irradiance is due to uncertainties in

column water vapor amount, cloud and aerosol properties and their vertical profiles,

treatment of diurnal cycle of clouds, the surface albedo, and the insolation. Based on a

sensitivity study done by Zhang et al. (1995), if all surface downward shortwave irradiance

changes considered in their study (atmospheric, surface, and cloud properties) are inde-

pendent random errors with unknown sign, the uncertainty in the global annual mean

irradiance is 15.3 W m-2 [out of 193.4 W m-2 (Rossow et al. 1995), based on an average

from April 1985 through January 1989 using every third month]. Rossow (1995) also

compared modeled surface downward shortwave irradiances with surface observations.

The bias and RMS differences are from 10 to 20 W m-2 and from 10 to 15 W m-2,

respectively. These values are consistent with modeled and observed surface downward

shortwave irradiance difference given by Kato et al. (2008) at three Atmospheric Radiation

Measurement (ARM) sites, 20.5 W m-2 for Manus, 12.6 W m-2 for Southern Great Plains

(SGP), and 6.4 W m-2 for Barrow, Alaska.

There are also uncertainties in the observations of irradiance at the Earth’s surface due

to instrumentation. As pointed out by Gulbrandsen (1978), if the temperature gradient

within the instrument is not corrected, surface downward shortwave irradiances measured

by pyranometers can be biased low. Once the temperature gradient within a pyranometer is

eliminated (e.g., Haeffelin et al. 2001), modeled clear-sky surface downward shortwave

Table 1 Global annual mean surface shortwave irradiance estimates

SW down
(W m-2)

SW up
(W m-2)

NET
(W m-2)

TOA insolation
(W m-2)

Surface
absorptance

Gupta et al. (1999) 185 24 161 341.3 0.472

Zhang et al. (2004) 189 24 165 341.8 0.483

Hatzianastassiou et al. (2005) 172 23 149 341.8 0.436

Kim and Ramanathan (2008) 164 348.1 0.471

L’Ecuyer (2008)a 218 25 193 352 0.548

Wang and Pinker (2009) 168 341.7 0.492

Trenberth et al. (2009) 184 23 161 341.3 0.472

Kato et al. (2011) 192 23 169 341.3 0.495

a Only area covered by the CloudSat ground track and 82�N to 82�S is considered
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irradiances agree with observations to within 1% (Michalsky et al. 2006) when accurate

temperature and humidity profiles, aerosol properties, and surface albedo are used.

4 Top-of-Atmosphere (TOA) and Surface Radiative Flux Estimate Using
CALIPSO- and CloudSat-Derived Clouds

Active instruments can detect clouds better than passive sensors. Active instruments can

also observe cloud base heights, while the cloud base height derived from passive sensors

relies on climatological vertical cloud profiles (Zhang et al. 2004) or an empirical rela-

tionship based on the cloud physical thickness, cloud top temperature, and optical thick-

ness (Minnis et al. 2010, 2011). Properly determining the cloud base height improves the

accuracy of the surface downward longwave irradiance. In addition, active sensors can

detect multi-layer clouds and can improve cloud detections, particularly at nighttime over

the polar regions. Furthermore, better cloud top height derived from CALIPSO and

CloudSat leads to a better estimate of the emission component in near-infrared channels,

which can improve MODIS-derived cloud properties (Kato et al. 2011).

Improvements in modeled TOA and surface irradiances using Cloud-Aerosol Lidar with

Orthogonal Polarization (CALIOP)- and CloudSat Cloud Profiling Radar (CPR)-derived

cloud and aerosol properties compared with irradiances computed with MODIS only are

investigated by Kato et al. (2011) using 1 year of CALIPSO, CloudSat, CERES, and

MODIS combined data. When 1 year of TOA instantaneous irradiances computed with

CALIOP- and CPR-derived properties are averaged globally, the reflected shortwave

irradiance decreases by 12.5 W m-2 (5.0%, relative to MODIS only) and the longwave

irradiance increases by 2.5 W m-2 (1.1%, relative to MODIS only). As a consequence,

both the reflected shortwave and longwave irradiances computed with CALIOP- and CPR-

derived properties agree better with CERES-derived TOA irradiances to within 0.5 W m-2

(out of 237.8 W m-2 CERES value) for reflected shortwave and 2.6 W m-2 (out of

240.1 W m-2 CERES value) for longwave irradiances. Differences in monthly zonal mean

irradiance are, however, larger at some latitudes than the difference of the global mean

irradiances. Therefore, a good agreement with the global annual mean CERES-derived

irradiance is, in part, because of compensating errors. Nevertheless, the result of Kato et al.

(2011) indicates that the accuracy of modeled global annual mean irradiances improves

when CALIOP- and CPR-derived cloud and aerosol properties are used. A summary of

surface irradiances estimated by Kato et al. (2011) is shown in Table 2. Note that a bias of

1.5 W m-2 in the surface downward longwave irradiance, which is explained in Sect. 5

and in Kato et al. (2011), is expressed explicitly in Table 2.

5 Uncertainty Estimates

In this section, we calculate the longwave and shortwave surface upward and downward

irradiances using two different methods and assume the difference between these methods

defines the irradiance uncertainty primarily due to cloud input differences. In computations

with CALIPSO and CloudSat, the B1 enhanced algorithm (Minnis 2010) is used to derive

cloud properties from MODIS radiances. In computations with MODIS only, the Ed2

CERES cloud algorithm (Minnis 2011) is used to derive cloud properties from MODIS

radiances. Cloud properties derived from MODIS are used in both cases, but in the first (B1

enhanced), the passive retrieval is enhanced by the addition of the cloud information
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supplied by CALIPSO and CloudSat, whereas in the second (Ed2), the passive retrieval

stands alone. Aerosol optical thicknesses are given by the MODIS level 2 aerosol product,

MYD04 (Remer et al. 2005), in both computations. CALIPSO provides the height of

aerosol layers for computations with CALIPSO and CloudSat data. Aerosol type deter-

mines optical properties of aerosol for shortwave and longwave computations. When

CALIPSO detects dust layers, dust aerosols are used in irradiance computations, while the

aerosol type in the MODIS only irradiance computations relies on an aerosol transport

model. Ocean surface albedos are from Jin et al. (2004) with slightly different foam

parameters in computations with MODIS only and with CALIPSO and CloudSat.

Broadband land surface albedos are inferred from MODIS narrowband albedos (Moody

et al. 2005) for computations with CALIPSO and CloudSat data. MODIS only computa-

tions use the clear-sky TOA albedo derived from CERES measurements (Rutan et al.

2009).

Figures 1 and 2 show, respectively, the surface downward longwave irradiance dif-

ference and the relative difference of the surface downward shortwave irradiance. We

calculate the RMS difference of these two sets of irradiances averaged over four different

temporal and spatial scales, gridded, 1� zonal, and global spatial scales and monthly and

annual temporal scales. We use a 30� longitude 91� latitude grid box because this assures

at least one sample a day in a grid box by CALIPSO and CloudSat. CALIPSO and

CloudSat provide better cloud properties, but do not cover the entire grid box every day as

does MODIS. The assumption is that the RMS difference represents the irradiance bounds

in which the true gridded monthly mean irradiance computed with perfect cloud and

aerosol properties resides at a 68% probability. We expect a similar uncertainty in the

modeled irradiance computed for a 1� 9 1� degree grid box with full swath data because

most grid boxes are sampled daily. The RMS differences of two sets of irradiances are used

to estimate the uncertainties. For example, the RMS difference of gridded monthly mean

irradiances is computed to estimate the gridded irradiance uncertainty. Similarly, the RMS

of 1� zonal monthly mean irradiances is computed to estimate the monthly zonal irradiance

uncertainty. Estimated uncertainties are summarized in Table 3. Uncertainty estimates are

given for ocean and land separately because of the significant differences in clouds and

atmospheric properties over each surface type. Their combined uncertainty is, at times,

smaller than ocean or land alone due to a partial cancelation of errors when irradiances

over both surface types are averaged over a 1� zone. The uncertainty of the monthly

gridded value is the average of ocean and land values weighted by, respectively, 0.7 and

0.3, instead of using ocean and land-mixed grid box values. Uncertainty in the surface

upward irradiance over polar regions can be very large because identifying the presence of

snow and ice is sometimes difficult. For this reason, the uncertainty of regional surface

upward shortwave irradiance does not apply over the polar regions.

Uncertainty in the surface upward longwave irradiances is due primarily to uncertainty

in the skin temperature. Both modeled irradiances with and without active sensors share the

Table 2 Global annual mean
surface irradiance estimated by
Kato et al. (2011)

Irradiance (W m-2)

Longwave down 345.4 ? 1.5

Longwave up 398.1

Shortwave down 191.9

Shortwave up 22.8
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same Goddard Earth Observing System (GEOS-5)-derived, (Rienecker et al. 2008; Bloom

et al. 2005) surface skin temperature as an input. Instead of using the irradiance RMS

difference, therefore, we compute the RMS skin temperature difference between that

extracted from GEOS-5 and the skin temperature derived from MODIS when the MODIS,

CALIPSO, and CloudSat data all indicate the scene is clear. This allows us to estimate the

uncertainty in the upward longwave irradiance using the RMS surface skin temperature

difference and the mean surface skin temperature.

Because the level 2 footprint products we used in this study do not account for the

diurnal cycle of insolation, the RMS difference of shortwave irradiances is computed as the

relative difference from the mean value. We then multiply the relative RMS difference by

the mean irradiance estimated with diurnal cycle of insolation [values extracted from the

CERES AVG product (Kato et al. 2011)]. For example, the surface downward shortwave

uncertainty is computed by multiplying the mean of relative RMS differences shown in

Fig. 2 by a mean irradiance accounting for a diurnal cycle shown in Table 3.

Uncertainties caused by aerosol optical properties and precipitable water in the surface

downward shortwave irradiance are not included in the difference between active sensor-

and passive sensor-derived surface downward shortwave irradiances described above.

According to Kim and Ramanathan (2008), uncertainty in the global annual mean net

surface shortwave irradiance under clear-sky conditions due to aerosol optical thickness,
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Fig. 1 Monthly mean surface longwave downward irradiance difference gridded in 1� latitude by 30�
longitude grids. The difference is defined as the irradiance computed with MODIS only minus the irradiance
computed with CALIPSO and CloudSat
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single scattering albedo, precipitable water, and ozone amount is, respectively, 1.5 W m-2,

1.5 W m-2, 1.3 W m-2, and 0.4 W m-2. If these uncertainties are independent, the sum of

these uncertainties leads to a 2.9 W m-2, 2.7 W m-2, 3.4 W m-2 uncertainty in the global

annual mean net surface shortwave irradiance for land plus ocean, ocean, and land,

respectively, after converting the net uncertainty to the downward irradiance uncertainty

using corresponding global annual mean surface albedos. Considering that these uncer-

tainties are in addition to that derived from irradiance differences primarily due to clouds,

we take the square root of the sum of squares of the value and the RMS difference due to

clouds for the global annual mean surface downward shortwave uncertainty. For all other

temporal- and spatial-scale uncertainties listed in Table 3, we simply add the value to the

RMS difference due to clouds. Table 4 summarizes input variables considered in esti-

mating the uncertainties.

Table 3 shows that the uncertainty in different temporal and spatial scales differs. When

the error in passive sensor-derived cloud properties depends on cloud type and the prob-

ability distribution of cloud type occurrence changes month to month, the irradiance

uncertainty computed with them is relatively large. However, even though a particular

cloud type occurs in a grid box, the probability distribution of cloud type tends to be

constant when the probability is computed over a larger area and a longer time period. If
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and CloudSat
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the magnitude of the error decreases by shifting a cloud type distribution with a specific

cloud type preferentially occurring in the distribution to a uniform distribution among all

cloud types, the bias error tends to cancel. Because the cloud distribution tends to be

uniform and stable with time, if we use larger spatial and longer temporal scales, the

uncertainty decreases at increasing temporal and spatial scales.

The discussion of how the bias error with known sign is separated from the uncertainty

follows, using the uncertainty estimates given in Kato et al. (2011). The cloud base height

detected by CloudSat can cause a 1.1 W m-2 bias error in the global annual mean

downward longwave irradiance due to precipitation. If three-hourly skin temperature and

one-hourly temperature and humidity profiles are used as opposed to one-hourly skin

temperature and temperature and humidity profiles, then the global annual mean surface

downward irradiance decreases by 2.6 W m-2 due to missing peak values during daytime

(Kato et al. 2011). The uncertainty in irradiance caused by the uncertainty in the near-

surface temperature and precipitable water is ±6.9 W m-2. Based on this, the range of the

global annual mean surface downward longwave irradiance computed with CALIPSO- and

CloudSat-derived cloud and aerosol properties is from -5.4 to 8.4 W m-2 (?2.6-

1.1 ± 6.9 W m-2). If the global annual mean surface downward longwave irradiance is

estimated using only MODIS-derived cloud and aerosol properties, bias errors of cloud

fraction and cloud base height cause a -3.4 W m-2 irradiance bias (Kato et al. 2011). This

leads to the range of the passive sensor-derived global annual mean surface downward

longwave irradiance of -0.2–14.0 W m-2 (?2.6 ? 3.4-1.1 ± 6.9 W m-2). If we treat

these bounds as one standard deviation (i.e., 2 out of 3 chance that the modeled irradiance

lies in the interval), then the uncertainty expressed is 6.9 W m-2 (the mean of the upper

and lower bound) for both irradiances (Taylor and Kuyatt 1994). Note that bias error does

not contribute to the uncertainty expressed in this way. The range where the true value

resides for a specific irradiance estimate is computed by adding bias errors of the specific

estimate to the uncertainty. Therefore, uncertainties shown in Table 3 are considered as

values after known biases have been removed. The overall uncertainty in Table 4,

Table 3 Summary of uncertainties in the irradiance computed with satellite-derived cloud and aerosol
properties, in Wm-2

Mean value Estimated uncertainty

Monthly
gridded

Monthly
zonal

Monthly
global

Annual
global

Downward longwave Ocean ? land 345 14 11 7 7

Ocean 354 12 10 7 7

Land 329 17 15 8 7

Upward longwave Ocean ? Land 398 15 8 3 3

Ocean 402 13 9 5 5

Land 394 19 15 5 4

Downward shortwave Ocean ? Land 192 10 8 6 4

Ocean 190 9 8 5 4

Land 203 12 10 7 5

Upward shortwave Ocean ? Land 23 11 3 3 3

Ocean 12 11 3 3 3

Land 53 12 8 6 6
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therefore, does not include bias errors with known sign. One other factor that affects the

uncertainty is the TOA irradiance derived from CERES observations. We assume that

modeled surface irradiances are not independent of the TOA irradiance derived from

CERES observations. In other words, modeled TOA irradiances need to be consistent with

TOA CERES-derived irradiances to within their uncertainties.

6 Comparison with Surface Observations

Modeled and observed surface irradiances have been compared in many studies (e.g.,

Rossow and Zhang 1995; Rose et al. 2006; Charlock et al. 2006; Wang and Pinker 2009;

Niu et al. 2010). The RMS difference between modeled and observed irradiances at surface

sites can be used as a measure of uncertainty. The noise of temporal and spatial mismatch

Table 4 Uncertainty in the global annual mean surface irradiances (Ocean ? Land), in Wm-2

Bias error with known sign Uncertainty References

Surface downward longwave irradiance

Clouds base height -1.1a Kato et al. (2011)

Temporal interpolation -2.6 Kato et al. (2011)

Surface temperature 4.5 Kato et al. (2011)

Precipitable water 5.2 Zhang et al. (2006),
Kato et al. (2011)

Interannual variability 0.8 Kato et al. (2011)

Overall uncertainty 6.9

Surface upward longwave irradiance

Surface skin temperature 3.2 This study

Interannual variability 0.4 This study

Overall uncertainty 3.2

Surface downward shortwave irradiance

Clouds 2.8 This study

Aerosol optical thicknessb 1.7 Kim and Ramanathan
(2008)

Aerosol single scattering
albedob

1.7 Kim and Ramanathan
(2008)

Precipitable waterb 1.5 Kim and Ramanathan
(2008)

Ozoneb 0.5 Kim and Ramanathan
(2008)

Interannual variability 0.3 This study

Overall uncertainty 4.0

Surface upward shortwave irradiance

Albedo 3.4 This study

Interannual variability 0.1 This study

Overall uncertainty 3.4

a 1.1 W m-2 is when active sensors are used but -3.6 Wm-2 when only passive sensor is used
b Surface albedo of 0.12 is used to estimate the downward shortwave uncertainty from the net shortwave
uncertainty given by Kim and Ramanathan (2008)
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between observed surface irradiances, however, dominates especially shortwave irradi-

ances in the comparisons. The uncertainty might be overestimated, if the surface site does

not represent the grid box where the site is located when the RMS difference of modeled

and observed surface irradiance is used as the uncertainty.

Figure 3 shows comparison of modeled monthly 1� 9 1� gridded surface longwave and

shortwave downward irradiances with surface observations. Modeled irradiances are

extracted from the edition 2 CERES AVG product. The 26 grid boxes used in the sample

have surface observation sites located within their boundaries. Surface sites and grid boxes

are selected such that surface properties in the vicinity of the site adequately represent the

entire grid box (‘‘Appendix’’). For example, surface sites on islands or at high elevations

with variable terrain are excluded. Surface observations are averaged over a month. Five

years of data from March 2000 through February 2005 are used. The RMS difference for

the surface downward longwave and shortwave irradiances is, respectively, 9.4 and

8.5 W m-2.

We can separate the RMS difference into three components,

r2 ¼ r2
s þ r2

t þ r2
m; ð1Þ

where r is the RMS difference computed with the difference between modeled gridded

monthly mean irradiance and observed monthly mean irradiance, rs is the RMS difference

due to variability of surface irradiance within the grid (spatial sampling), rt is the uncer-

tainty due to temporal resolution of modeled irradiance, and rm is modeling error and the

noise due to matching modeled irradiances with surface observations. The spatial RMS

error rs arises because observations at a surface site measure the irradiance at one location

while satellite observations cover the entire grid box. The temporal sampling based on

satellite observation is typically limited to several times a day with a sun-synchronous orbit

or once every 3 h or 1 h with a geostationary satellite. Modeling error includes the error in

the inputs and assumptions in the model. In addition, the difference caused by matching

instantaneous modeled irradiance with surface observations at satellite overpass time, as
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Fig. 3 Comparison of monthly mean observations at 26 surface sites and 1� 9 1� monthly mean modeled
surface downward longwave irradiance (left) and surface downward shortwave irradiance (right). Modeled
irradiances are extracted from Ed2 CERES AVG product. Data from March 2000 through October 2005 are
used
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well as the uncertainty in surface observations are included in rm because the noise is not

easily separated from the modeling error.

The RMS difference shown in Fig. 3 is the sum of these three components. When the

surface properties at a surface observation site do not represent the surface property of the

grid where the surface site is located, rs is large (‘‘Appendix’’). If surface sites indicated by

green bars in Figs. 5 and 6 are used, however, rs is almost negligible for the monthly mean

surface downward longwave irradiance and 2.6 W m-2 for the monthly mean surface

downward shortwave irradiance. Comparisons are made between instantaneous modeled

irradiances and observed irradiances at the satellite overpass time, and scaling the

instantaneous irradiance difference to the daily mean value gives the rm term. The temporal

sampling term rt can be inferred from modeled and observed daily mean irradiance

comparison, or if we assume the relationship given by Eq. 1, rt can also be derived from r,

provided rs and rm are known. We estimate the three components from monthly mean

modeled and observed irradiances comparisons at 26 sites where the surface sites represent

the grid box surface properties relatively well (Table 5). The values of rt in Table 5 are

derived from r, rs, and rm, which are the residual of the relationship given by Eq. 1 for the

RMS difference and rt = r-rs-rm for the bias. The RMS differences might be considered

as spatial sampling noise rs, temporal sampling noise rt, and instantaneous modeling error

rm for a typical grid box. Note that a large downward shortwave irradiance rt bias is due to

a larger rm, which is a result of matching the TOA reflected shortwave irradiance with the

CERES-derived reflected shortwave irradiance (Rose et al. 1997). The difference between

modeled and CERES-derived TOA irradiances, therefore, affects the modeled surface

irradiance.

The RMS difference shown in Fig. 3 is computed with monthly mean gridded and

observed surface irradiances. In principle, if we have a surface site in a grid box, we can

remove rt and rm by comparing gridded monthly mean modeled irradiance with surface

observations. Then, the uncertainty of modeled surface irradiance is rs because the mod-

eled irradiance cannot be evaluated better than the spatial sample noise. If we have at least

one surface site in each grid box and ignore measurement uncertainty, then the uncertainty

of modeled irradiance, in principle, can be much smaller and equal to rs. Because most grid

boxes do not have surface sites, the uncertainty of monthly gridded mean modeled irra-

diance is somewhat equivalent to the RMS difference shown in Fig. 3. Figure 4 shows a

comparison of the RMS difference from Fig. 3 and the uncertainty of the gridded monthly

mean surface downward longwave and shortwave irradiances from Table 3. Uncertainties

of gridded monthly mean downward longwave and shortwave irradiances listed in Table 3

Table 5 Monthly gridded mean irradiance uncertainties derived from modeled and observed surface
irradiancesa, in Wm-2

Totalb, r Spatial sampling, rs Temporal samplingc, rt Modeling error, rm

LW down RMS 9.7 1.3 6.7 6.9

SW down RMS 8.4 4.1 2.7 6.8

LW down mean bias -7.0 -0.1 Negligible -6.9

SW down mean bias 3.8 -2.3 -0.6 6.7

a Derived from 26 surface sites used in Fig. 3
b Values derived from Fig. 3 scaled by 345 (from Table 3)/333 (mean LW observation value) and 192
(from Table 3)/195 (mean SW observation value)
c Values derived from, r, rs, and rm
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are larger than the RMS difference. This indicates that our estimate is on the conservative

side according to the comparison with surface observations.

The bias difference of monthly gridded mean irradiances and observations shown in

Fig. 3 is not zero. This suggests that even when many modeled irradiances are averaged for

large regions such as zonal or global or a longer time scale such as annual mean, the

irradiance error does not completely cancel out. As a consequence, the global annual mean

irradiance uncertainty might be comparable to the mean bias shown in Fig. 3. The com-

parison shown in Fig. 4 is consistent with this expectation.

7 Discussion and Conclusions

The uncertainty of the downward longwave irradiance is the largest uncertainty among the

global annual mean surface irradiance component uncertainties (Table 3). The global

annual mean surface downward longwave irradiance is 345.4 W m-2 with an estimated

bias error of -1.5 W m-2 (Kato et al. 2011). Therefore, the 1r range is 339.9–353.9

W m-2 (345.4 ? 1.5 ± 7 W m-2). The spread of the global annual mean surface down-

ward longwave irradiance using satellite observations discussed in Sect. 2 is 6 W m-2

(342–348 W m-2), which is smaller than the 7 W m-2 uncertainty estimated in this study.

The global annual mean surface downward shortwave irradiance estimated in Kato et al.

(2011) is 191.9 W m-2. One-r bounds of the global annual mean downward shortwave

irradiance are 187.9–195.9 W m-2 (with the insolation of 341.3 W m-2). The uncertainty

of the global annual mean surface up and downward shortwave irradiances estimated in

this study is, respectively, 3 and 4 W m-2. If we assume upward and downward shortwave

irradiance uncertainties are correlated, the uncertainty of global annual mean net surface

shortwave irradiance is 7 W m-2. One-r bounds of the global annual mean surface

absorptance are 0.475–0.516. The spread of the global annual mean surface net shortwave

irradiance discussed in Sect. 3 is 8.2 W m-2 (the absorptance from 0.471 to 0.495), if we
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Fig. 4 (Left) Comparison of the root square mean (RMS) error (left blue bar) and bias error (right blue bar)
derived from Fig. 3 with the uncertainty of the monthly gridded surface downward longwave irradiance over
ocean (left green bar) and over land (left brown bar) and with the uncertainty annual global surface downward
longwave irradiance over ocean (right green bar) and over land (right brown bar). The uncertainties are from
Table 3. Right). Same as the left plot but for surface downward shortwave irradiance
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exclude the maximum and minimum values. The uncertainty estimated in this study is

close to the spread of values estimated by earlier studies discussed in Sect. 3, but 50% (3

out of 6) of the values fall outside the one-r bounds.

Given the uncertainty in Table 3, it is possible to estimate the uncertainty in the global

annual net surface irradiance. However, the uncertainties in the four irradiance components

are not independent. For example, the surface temperature uncertainty affects both upward

and downward longwave irradiances. Similarly, if surface downward shortwave irradiance

is overestimated, then surface upward shortwave irradiance is probably overestimated. We

therefore assume that the shortwave and longwave components are independent, but that

upward and downward irradiance uncertainties are correlated. Adding upward and

downward components, squaring the sum of shortwave and longwave components, sum-

ming them, and taking the square root of the resulting value gives an uncertainty of the

global annual mean net surface irradiance of 12 W m-2. Therefore, 1r bounds of the

global annual mean net surface irradiance are 117.9 ± 12 W m-2 (from 105.9 to 129.9

W m-2). Note that the -1.5 W m-2 bias error in the downward longwave irradiance (Kato

et al. 2011) is subtracted from the mean value in this estimate.

Studies by Zhang et al. (2006) and Kato et al. (2011) indicate that when satellite-derived

cloud and aerosol properties are used for computations, uncertainty in the surface down-

ward longwave irradiance is dominated by the uncertainty in near surface temperature and

precipitable water. Because the uncertainty in the surface downward longwave irradiance

is the largest component of the uncertainty in the net surface irradiance, the improvement

of near-surface temperature and precipitable water accuracy is necessary to improve the net

surface irradiance estimate. The estimate of diurnal cycle of satellite-derived cloud

properties relies on geostationary satellites, which provide less accurate cloud properties

than MODIS. The process to incorporate geostationary satellite–derived cloud properties in

the irradiance estimate minimizes the effect of the error in geostationary-derived cloud

properties (Young et al. 1998). In addition, the diurnal cycle correction to the top-of-

atmosphere global annual mean shortwave irradiance is small (Loeb et al. 2009). The

uncertainty due to the error in the geostationary satellite–derived cloud properties is,

however, not explicitly included in the current uncertainty estimate. Investigating the effect

of geostationary–derived cloud properties on the surface downward shortwave irradiance is

necessary to further understand the uncertainty in the surface net irradiance.
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Appendix: Surface Observation Spatial Sampling Noise Estimate

To understand the spatial sampling noise within a 1 degree grid box, we use two sets of

modeled surface irradiances extracted from CERES products, CRS and SYN. CRS is a
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level 2 product that contains instantaneous modeled surface irradiances at the local Terra

overpass time. SYN is a level 3 product that contains temporally averaged estimates of

surface irradiance, where hourly modeled irradiances represent the entire 1� 9 1� grid box.

We subset CRS irradiances within 25 km from surface sites and average them over a

month. The resulting mean irradiance simulates surface observations at overpass time

averaged over a month. We also subset SYN monthly mean irradiances from a subset of

grid boxes that coincide with the Terra satellite overpass time. The 62 grid boxes were

selected from a larger set used for CERES validation. Some contain surface observation

sites and some simply represent ecosystems of interest. If the box contains a surface

observation site, the 25-km-radius region from which CRS is averaged is centered at that

site (though in this analysis no surface observations are used). If there is no surface site,

then the CRS footprints fall within 25 km of the center of the 1� grid box. We then
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Fig. 5 Sampling noise estimate for 62 surface sites. The RMS difference and bias are estimated comparing
modeled downward longwave irradiances at Terra local overpass time within 25 km from the surface
location averaged over a month and 1� 9 1� gridded monthly mean irradiances within 30 min from overpass
time (i.e., an hour box contains the local overpass time). Six Julys from 2000 through 2005 are used
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compute the RMS difference between the CRS and SYN monthly means for each locations

using 6 Julys (2000 through 2005). Figures 5 and 6 show the histogram of the RMS

differences. Surface locations are separated into four different groups: uniform terrain,

coastal, variable terrain, and coastal and variable terrain. The 26 sites used in Fig. 3 are a

subset of those shown in Figs. 5 and 6 that contain surface observations and are designated

as uniform terrain (Figs. 5, 6).
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